合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 磺酸基团修饰水滑石LB复合薄膜自组装机理及酸致变色特性(一)
> 马来酸酐为联接剂,合成Gemini非离子表面活性剂的表面性能测试
> 低界面张力纳米流体提高低渗透油藏压裂渗吸速率和采收率(一)
> 助剂对乙基多杀菌素药液在杧果叶片润湿铺展行为、表面张力的影响——讨论
> 膜分析仪应用:胆固醇对 hBest1/POPC 和 hBest1/SM Langmuir 单分子层的
> 烧结矿致密化行为研究:不同碱度条件下熔体的表面张力、表观黏度值(二)
> 以大豆为原料合成的N-椰子油?;春习被岜砻婊钚约帘砻嬲帕?、乳化起泡润湿性能测定(一)
> Wilhelmy吊板法测试温度、铝元素和稀土元素对锌浴表面张力的影响
> 数值模拟不同活性水的表面张力构建喷雾降尘模型
> 基于界面张力弛豫法考察羟基取代烷基苯磺酸盐的界面扩张流变性质(二)
推荐新闻Info
-
> 球拟假丝酵母菌合成槐糖脂类表面活性剂、降解含油废水的表面张力(三)
> 球拟假丝酵母菌合成槐糖脂类表面活性剂、降解含油废水的表面张力(二)
> 球拟假丝酵母菌合成槐糖脂类表面活性剂、降解含油废水的表面张力(一)
> 碳微球及氨基化碳纳米管组装单元的有序LB膜制备与性能研究
> 过氧化氢氧化处理碱木质素对合成表面活性剂表面张力的影响(二)
> 过氧化氢氧化处理碱木质素对合成表面活性剂表面张力的影响(一)
> 黄原胶对泡沫溶液泡沫性能、表面张力的影响(三)
> 黄原胶对泡沫溶液泡沫性能、表面张力的影响(二)
> 黄原胶对泡沫溶液泡沫性能、表面张力的影响(一)
> 海上抗超高温低渗透储层钻开液配方设计及应用效果(三)
超微量天平应用于高阻燃辐照交联低烟无卤聚烯烃制备
来源:赵岭 瑞旭(河南)科技集团有限公司 浏览 1099 次 发布时间:2024-07-19
随着安全、环保要求的提高,低烟无卤阻燃聚烯烃绝缘料凭着其低烟、无卤环保的优势在许多线缆产品中取代了传统的PVC产品,在民用布电线产品中更是得到了广泛的应用,而辐照交联低烟无卤聚烯烃绝缘料与热塑性产品相比具有更高的耐温等级,因此更是得到了线缆产品的青睐。
常规的低烟无卤聚烯烃绝缘料产品,不论是热塑性还是辐照交联的均需满足GB/T32129-2015的标准要求就可以。配方设计也较常规,均采用乙烯-醋酸乙烯酯共聚物、聚乙烯、改性聚乙烯、聚烯烃树脂、三元乙丙橡胶等聚烯烃类树脂为基体材料,添加大量的氢氧化铝、氢氧化镁等无机阻燃剂,再添加聚乙烯蜡、硅烷偶联剂、硅酮母粒、硬脂酸盐等加工助剂,经过密炼加双阶挤出机组塑化混合造粒而成。
在舰船、矿用等场合使用的电缆其性能有着特殊的要求,对于电缆护套材料不仅要有优良的物理机械性能,还要求有较高的阻燃性能,并对电缆材料具有一定的抗撕要求,因此提出一种高阻燃辐照交联低烟无卤聚烯烃及其制备方法。
高阻燃辐照交联低烟无卤聚烯烃配方比例:热塑性基料:45~90﹪,阻燃剂:10~20﹪,抗氧化基料:0.2~0.4﹪,润滑剂:0.1~0.2﹪,交联剂:0.1~0.2﹪。
高阻燃辐照交联低烟无卤聚烯烃制备步骤:
步骤1:原料称取,按组分配比通过微量天平称取原料;
步骤2:均匀混料,将称取好的原料各组分加入高速捏合机中混合均匀;
步骤3:密炼作业,将混合好的原料加入密炼机中进行密炼;
步骤4:挤出造粒,密炼后的原料转入到双螺杆挤出机熔融挤出,经切粒、冷却得到辐照交联低烟无卤阻燃聚烯烃绝缘料粒子;
步骤5:取样检测,取样辐照交联低烟无卤阻燃聚烯烃绝缘料粒子进行阻燃性能和抗撕性能检测。
步骤6:规?;?,根据检测结果优化组分配比,进行规?;?。
通过微量天平按照说明书附图1中的配方1#、配方2#、配方3#和配方4#中的组分比例分别称取A号原料、B号原料、C号原料和D号原料,然后将A号原料、B号原料、C号原料和D号原料分别加入加入高速捏合机中混合均匀制得A号混合原料、B号混合原料、C号混合原料和D号混合原料。
接着将A号混合原料、B号混合原料、C号混合原料和D号混合原料加入密炼机中进行密炼,制得A号密炼原料、B号密炼原料、C号密炼原料和D号密炼原料,接着将A号密炼原料、B号密炼原料、C号密炼原料和D号密炼原料转入到双螺杆挤出机熔融挤出并切粒冷却得到A号低烟无卤阻燃聚烯烃绝缘料粒子、B号低烟无卤阻燃聚烯烃绝缘料粒子、C号低烟无卤阻燃聚烯烃绝缘料粒子和D号低烟无卤阻燃聚烯烃绝缘料粒子,
测试双螺杆挤出机的温度设置为:加料段135-140℃,混料段145-155℃,挤出造粒段160-170℃,机头部分165-160℃,接着通过垂直燃烧试验法对粒子进行辐照前的阻燃性能测试,耐撕裂性测试按照GB/T1040.3-2006测试和CQC1103-014附录A进行测试,测得A号低烟无卤阻燃聚烯烃绝缘料粒子、B号低烟无卤阻燃聚烯烃绝缘料粒子、C号低烟无卤阻燃聚烯烃绝缘料粒子和D号低烟无卤阻燃聚烯烃绝缘料粒子的阻燃性能和耐撕裂性能。
接着将A号低烟无卤阻燃聚烯烃绝缘料粒子、B号低烟无卤阻燃聚烯烃绝缘料粒子、C号低烟无卤阻燃聚烯烃绝缘料粒子和D号低烟无卤阻燃聚烯烃绝缘料粒子分别放置到经电子加速器产生的电子线(β射线)照射,使粒子交联得到A号辐照交联低烟无卤阻燃聚烯烃绝缘料粒子、B号辐照交联低烟无卤阻燃聚烯烃绝缘料粒子、C号辐照交联低烟无卤阻燃聚烯烃绝缘料粒子和D号辐照交联低烟无卤阻燃聚烯烃绝缘料粒子。
对A号辐照交联低烟无卤阻燃聚烯烃绝缘料粒子、B号辐照交联低烟无卤阻燃聚烯烃绝缘料粒子、C号辐照交联低烟无卤阻燃聚烯烃绝缘料粒子和D号辐照交联低烟无卤阻燃聚烯烃绝缘料粒子的阻燃性能和耐撕裂性能进行检测,辐照后配方4#的耐撕裂强度明显大于配方1#、配方2#、配方3#的耐撕裂强度。





