合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> Kibron超微量天平在生物医药研究领域应用实例
> 高分子类助剂主要增效机制及在除草剂领域应用机理
> 仲醇聚氧乙烯醚硫酸盐平衡和动态表面张力及应用性能研究(一)
> 表面活性剂如何有效降低油水界面张力
> 拉脱法测量:不同性能磁性液体的磁表面张力变化规律与影响因素(一)
> 水成膜泡沫灭火剂之氟碳表面活性剂YM-316复配性能及表面张力测定(下)
> 不同温度和压力对AOT稳定CO2乳液的界面张力影响(一)
> 水面上单分子层膜通过磷脂光控开关实现可逆光学控制——结果与讨论
> 海洋环境表面活性物质来源及对海洋飞沫气溶胶数浓度、粒径分布、理化性质的影响(一)
> 腰果酚醛树脂嵌段聚醚破乳剂表面/界面性能、油滴破裂速率常数测定(一)
推荐新闻Info
-
> ?90%实验室不知道:表面张力仪读数误差的隐秘来源与终极解决方案
> 基于LB膜技术制备胶原蛋白肽覆层羟基磷灰石的新方法——结果与讨论、结论
> 基于LB膜技术制备胶原蛋白肽覆层羟基磷灰石的新方法——摘要、材料与方法
> 离子组成、pH值对纳米SiO2/SDS体系降低油水界面张力的影响(三)
> 离子组成、pH值对纳米SiO2/SDS体系降低油水界面张力的影响(二)
> 离子组成、pH值对纳米SiO2/SDS体系降低油水界面张力的影响(一)
> 猪肉、鸡肉和鱼肉肌浆蛋白油-水界面性质、氨基酸组成、蛋白质构象研究(三)
> 猪肉、鸡肉和鱼肉肌浆蛋白油-水界面性质、氨基酸组成、蛋白质构象研究(二)
> 猪肉、鸡肉和鱼肉肌浆蛋白油-水界面性质、氨基酸组成、蛋白质构象研究(一)
> 双子型起泡剂ULT-1的分子结构式、表面张力、抗温/抗盐性能及煤样润湿性变化——结果与讨论、结论
交替型LB膜分析仪工作原理
来源:奈奈生 浏览 1389 次 发布时间:2023-02-08
工作原理
位于气-液或液-液界面处不可溶的功能性分子、纳米颗粒、纳米线或微粒所形成的单分子层可定义为Langmuir膜。这些分子能够在界面处自由移动,具有较强的流动性,易于控制其堆积密度,研究单分子层的行为。将材料沉积在浅池(称顶槽)中的水亚相上,可以得到Langmuir膜。在滑障的作用下,单分子层可以被压缩。表面压力即堆积密度可以通过Langmuir膜分析仪的压力传感器进行控制。
在进行典型的等温压缩测试时,单分子层先从二维的气相(G)转变到液相(L)最后形成有序的固相(S)。在气相中,分子间的相互作用力比较弱;当表面积减小,分子间的堆积更为紧密,并开始发生相互作用;在固相时,分子的堆积是有序的,导致表面压迅速增大。当表面压达到最大值即塌缩点后,单分子层的堆积不再可控。
图1单分子层膜状态受表面压力增加的影响
LB膜沉积过程是将样品从单分子层中垂直拉出(图2a),通过反复沉积技术可制备多层LB膜(图2b),亲水性及疏水性样品均可在液相或气相中沉积为单分子层。
图2(a).LB沉积过程示意图;(b).多层单分子膜的制备
交替型LB膜分析仪的镀膜过程如图3所示。当使用两个单分子层压缩沉积池和一个空白沉积池时,可实现交替镀膜,浸渍过程可在3个沉积池中选择任意路径多次循环(图3a);在共同的亚相(浅蓝色)上方,有两种不同的单分子层(紫色和深蓝色)(图3b);上臂将样品向下通过单分子膜,由下臂接住样品。沉积循环也可从亚相开始,进行第一层镀膜(图3c);下臂可根据需要旋转到另一单分子层的沉积池或空白沉积池中,改变沉积池(图3d);下臂提起样品,传递给上臂(样品从任意一侧通过两个单分子层中任意一个),进行第二层镀膜(图3e)。
图3(a).交替沉积池构造示意;(b).样品在在夹具上;(c).第一层镀膜;(d).改变沉积池;(e).第二层镀膜